mhrlife/phpai-kit

PHP library for OpenAI communication with advanced tool function support

Installs: 25

Dependents: 0

Suggesters: 0

Security: 0

Stars: 6

Watchers: 0

Forks: 2

Open Issues: 0

pkg:composer/mhrlife/phpai-kit

v0.0.8 2025-11-30 21:00 UTC

This package is auto-updated.

Last update: 2025-12-01 12:16:24 UTC


README

A powerful PHP library for OpenAI communication with advanced tool function support, automatic JSON Schema generation, and structured output parsing.

Features

  • Tool Functions with Attributes: Decorate functions with #[Tool] to make them AI-callable
  • Automatic JSON Schema: Automatically converts PHP classes to OpenAI-compatible JSON Schema
  • Structured Output: Type-safe output models using OpenAI's response_format with JSON Schema
  • Agent Execution Loop: Handles tool calls automatically until task completion
  • PHPDoc Support: Enhanced type inference from PHPDoc annotations (@var array<string>, etc.)
  • Type Safety: Full PHP 8.1+ type support with PHPStan level 5
  • Works with OpenRouter: Compatible with OpenAI API and OpenRouter

Requirements

  • PHP 8.1 or higher
  • OpenAI API key

Installation

composer require mhrlife/phpai-kit

Quick Start

1. Define Your Models

use Mhrlife\PhpaiKit\Attributes\Tool;

// Input parameter class
class WeatherParams {
    public string $location;
    public ?string $unit = 'celsius';
}

// Output model class
class WeatherReport {
    public string $location;
    public float $temperature;
    public string $description;
}

2. Create Tool Functions

#[Tool("get_weather", "Get current weather for a location")]
function getWeather(WeatherParams $params): array {
    // Your implementation
    return [
        'location' => $params->location,
        'temperature' => 22.5,
        'description' => 'Sunny',
    ];
}

3. Create and Run Agent

use OpenAI;

$openai = OpenAI::factory()
    ->withApiKey($apiKey)
    ->make();

$agent = \Mhrlife\PhpaiKit\create_agent(
    $openai,
    tools: [getWeather(...)],
    output: WeatherReport::class
);

$report = $agent->run("What's the weather in Paris?");

echo "Temperature: {$report->temperature}°C\n";

Core Concepts

Tool Functions

Tool functions are regular PHP functions decorated with the #[Tool] attribute:

#[Tool("function_name", "Description for AI")]
function myTool(InputClass $params): mixed {
    // Function must accept exactly one parameter (a class)
    // Return value can be any serializable type
}

Requirements:

  • Must have exactly one parameter
  • Parameter must be a class (not scalar type)
  • Must have #[Tool] attribute with name and description

Automatic Schema Generation

The library automatically converts your PHP classes to JSON Schema:

class SearchParams {
    public string $query;           // Required string
    public ?int $limit = 10;        // Optional int with default
    /** @var array<string> */
    public array $filters = [];     // Array type from PHPDoc
}

Supported Types:

  • Scalar types: string, int, float, bool
  • Arrays with PHPDoc: array<Type>, Type[]
  • Nested objects: Any class type
  • Enums: String and integer-backed enums
  • Union types: string|int
  • Nullable types: ?string, string|null

Enum Support:

The library automatically extracts enum values for OpenAI schema constraints:

enum Status: string {
    case PENDING = 'pending';
    case ACTIVE = 'active';
    case INACTIVE = 'inactive';
}

class TaskParams {
    public string $title;
    public Status $status;          // Enum values are extracted as constraints
}

Generates schema with enum constraint:

{
    "type": "object",
    "properties": {
        "status": {
            "type": "string",
            "enum": ["pending", "active", "inactive"]
        }
    }
}

Structured Output

Define output models to get type-safe responses:

class AnalysisResult {
    public string $summary;
    public int $score;
    public array $tags;
}

$agent = create_agent(
    $openai,
    tools: $tools,
    output: AnalysisResult::class
);

$result = $agent->run("Analyze this text...");
// $result is instance of AnalysisResult

Advanced Usage

Using AgentBuilder

For more control, use the fluent builder API:

use Mhrlife\PhpaiKit\Agent\AgentBuilder;

$agent = (new AgentBuilder($openai))
    ->withModel('gpt-4o-mini')
    ->withTools([tool1(...), tool2(...)])
    ->withOutput(OutputClass::class)
    ->build();

Observability with Callbacks

Add callbacks for tracing, logging, and monitoring. Important: Callbacks must be passed to agent->run(), not at agent creation time.

use function Mhrlife\PhpaiKit\Callbacks\create_langfuse_callback;

// Create agent WITHOUT callbacks
$agent = create_agent(
    $openai,
    tools: [getWeather(...)]
);

// Pass callbacks at runtime for proper trace hierarchy
$result = $agent->run(
    "What's the weather in Paris?",
    callbacks: [create_langfuse_callback()]
);

Why pass callbacks to run()? This ensures all LLM calls and tool executions are properly nested within a single trace. Each agent->run() creates one trace with nested spans for generations and tool calls.

Built-in Callbacks:

Langfuse Tracing - Complete observability with OpenTelemetry:

use function Mhrlife\PhpaiKit\Callbacks\{
    initialize_langfuse,
    create_langfuse_callback
};

// Optional: Initialize once with credentials
initialize_langfuse(
    publicKey: 'pk-...',
    secretKey: 'sk-...'
);

// Or use environment variables:
// LANGFUSE_PUBLIC_KEY, LANGFUSE_SECRET_KEY

// Pass callback to each run
$agent->run($message, callbacks: [create_langfuse_callback()]);

Custom Callbacks: Implement the AgentCallback interface:

use Mhrlife\PhpaiKit\Callbacks\AgentCallback;

class MyCallback implements AgentCallback {
    public function onRunStart(array $context): void {
        // Called when agent starts
        // $context: ['model' => string, 'input' => mixed, 'has_output_class' => bool]
    }

    public function onRunEnd(array $context): void {
        // Called when agent completes
        // $context: ['output' => mixed, 'total_iterations' => int]
    }

    public function onGenerationStart(array $context): void {
        // Called before each LLM call
        // $context: ['iteration' => int, 'messages' => array, 'model' => string]
    }

    public function onGenerationEnd(array $context): void {
        // Called after each LLM call
        // $context: ['finish_reason' => string, 'content' => string, 'tool_calls' => array, 'usage' => object]
    }

    public function onToolCallStart(array $context): void {
        // Called before tool execution
        // $context: ['tool_name' => string, 'arguments' => array, 'tool_call_id' => string]
    }

    public function onToolCallEnd(array $context): void {
        // Called after tool execution
        // $context: ['tool_name' => string, 'arguments' => array, 'result' => mixed, 'tool_call_id' => string]
    }

    public function onError(array $context): void {
        // Called on errors
        // $context: ['error' => string, 'exception' => Throwable]
    }
}

// Use your custom callback
$agent->run($message, callbacks: [new MyCallback()]);

Multiple Tools

Register multiple tools to give your agent more capabilities:

#[Tool("search_web", "Search the web")]
function searchWeb(SearchParams $params): array { /* ... */ }

#[Tool("calculate", "Perform calculations")]
function calculate(CalcParams $params): array { /* ... */ }

$agent = create_agent(
    $openai,
    tools: [searchWeb(...), calculate(...)],
    output: ResultClass::class
);

Complex Types with PHPDoc

Use PHPDoc for advanced type definitions:

class AdvancedParams {
    /**
     * List of user IDs to process
     * @var array<int>
     */
    public array $userIds;

    /**
     * Optional configuration map
     * @var array<string, string>|null
     */
    public ?array $config = null;
}

Error Handling

The library throws specific exceptions for different error types:

use Mhrlife\PhpaiKit\Exceptions\{AgentException, ToolException, SchemaException};

try {
    $result = $agent->run("Your prompt");
} catch (ToolException $e) {
    // Tool execution failed
} catch (SchemaException $e) {
    // Schema generation failed
} catch (AgentException $e) {
    // Agent runtime error
}

Vector Database with Filtering

Store and search documents using vector embeddings with Redis:

use Mhrlife\PhpaiKit\VectorDB\{
    RedisVectorDB, Document, DocumentSearch, IndexConfig,
    Filter, FilterOp, FilterableField, FilterFieldType, NumericRange
};

// Create vector DB with filterable fields
$vectorDB = new RedisVectorDB('my_index', $embeddingClient, $redis);
$vectorDB->createIndex(new IndexConfig(
    dimensions: 1536,
    distanceMetric: 'COSINE',
    filterableFields: [
        new FilterableField('category', FilterFieldType::Tag),
        new FilterableField('year', FilterFieldType::Numeric),
    ]
));

// Store documents with metadata
$vectorDB->storeDocumentsBatch([
    new Document('go', 'Go is a fast compiled language', ['category' => 'backend', 'year' => 2009]),
    new Document('php', 'PHP is a flexible language', ['category' => 'backend', 'year' => 1995]),
]);

// Search with filters
$results = $vectorDB->searchDocuments(new DocumentSearch(
    query: 'fast programming language',
    topK: 3,
    filters: [
        new Filter('category', FilterOp::Eq, 'backend'),
    ]
));

// Range filter example
$results = $vectorDB->searchDocuments(new DocumentSearch(
    query: 'programming language',
    topK: 3,
    filters: [
        new Filter('year', FilterOp::Range, new NumericRange(2000, 2010)),
    ]
));

Filter Operators:

  • FilterOp::Eq - Exact tag match
  • FilterOp::In - Match any in list (array value)
  • FilterOp::Contains - Text contains
  • FilterOp::Range - Numeric range (use NumericRange)
  • FilterOp::Gte - Greater than or equal
  • FilterOp::Lte - Less than or equal

Field Types:

  • FilterFieldType::Tag - Exact match (categories, tags)
  • FilterFieldType::Text - Full-text search
  • FilterFieldType::Numeric - Numeric range queries

Examples

See the examples/ directory for complete working examples:

  • examples/test_without_api.php - Test all features without API calls (recommended first)
  • examples/weather_example.php - Full weather tool example with OpenAI API
  • examples/langfuse_tracing_example.php - Complete example with Langfuse tracing
  • examples/vector_search_example.php - Vector search with filtering
  • examples/image_input.php - Image analysis with vision capabilities

Run the non-API example to see all features in action:

php examples/test_without_api.php

For Langfuse tracing:

export LANGFUSE_PUBLIC_KEY="pk-..."
export LANGFUSE_SECRET_KEY="sk-..."
php examples/langfuse_tracing_example.php

Image Analysis with Vision

The agent supports vision capabilities for image analysis. You can pass images to the agent in multiple ways:

Example 1: Base64 Encoded Image

$agent = create_agent($openai);

$base64Image = "...";

$response = $agent->run([
    ['role' => 'user', 'content' => [
        [
            'type' => 'text',
            'text' => 'Describe this image in detail.'
        ],
        [
            'type' => 'image_url',
            'image_url' => ['url' => $base64Image]
        ]
    ]],
]);

echo $response;

Example 2: Image from URL

$response = $agent->run([
    ['role' => 'user', 'content' => [
        [
            'type' => 'text',
            'text' => 'What is in this image?'
        ],
        [
            'type' => 'image_url',
            'image_url' => [
                'url' => 'https://example.com/image.png'
            ]
        ]
    ]],
]);

echo $response;

Example 3: Local File to Base64

// Load local image and convert to base64
$imagePath = '/path/to/image.png';
$imageData = file_get_contents($imagePath);
$base64Image = 'data:image/png;base64,' . base64_encode($imageData);

$response = $agent->run([
    ['role' => 'user', 'content' => [
        [
            'type' => 'text',
            'text' => 'Analyze this image.'
        ],
        [
            'type' => 'image_url',
            'image_url' => ['url' => $base64Image]
        ]
    ]],
]);

echo $response;

Supported Image Formats:

  • PNG
  • JPG/JPEG
  • GIF
  • WebP

See examples/image_input.php for complete working examples with all three approaches.

Architecture

The library is organized into clear components:

  • Attributes: #[Tool] decorator for marking functions
  • Schema: JSON Schema generation from PHP classes
  • Tools: Tool registration and execution
  • Agent: Main agent with execution loop
  • Output: Structured output parsing

Development

Run Tests

composer test

The test suite includes comprehensive unit tests for:

  • TypeMapper: PHP to JSON Schema type conversion
  • SchemaGenerator: Automatic schema generation from classes
  • ToolRegistry: Tool registration and management
  • ToolDefinition: OpenAI format conversion
  • ToolExecutor: Tool execution and parameter handling
  • OutputParser: Structured output parsing

All 117 tests pass successfully.

Run Static Analysis

composer lint

Format Code

composer format

Check Formatting

composer format:check

How It Works

  1. Registration: Tools are registered with their metadata extracted via reflection
  2. Schema Generation: Parameter classes are converted to JSON Schema automatically
  3. Execution Loop:
    • Agent sends request with tool definitions
    • OpenAI responds with tool calls
    • Library executes tools and sends results back
    • Loop continues until completion
  4. Output Parsing: Final response is parsed into typed output model

License

MIT

Author

Mohammad Hoseinirad

Contributing

Contributions are welcome! Please ensure code passes PHPStan level 5 and follows PSR-12 formatting.