edgaras / strsim
Collection of string similarity and distance algorithms in PHP including Levenshtein, Damerau-Levenshtein, Jaro-Winkler, and more
Installs: 3 626
Dependents: 0
Suggesters: 0
Security: 0
Stars: 11
Watchers: 1
Forks: 2
Open Issues: 0
pkg:composer/edgaras/strsim
Requires
- php: >=8.3.0
Requires (Dev)
- phpunit/phpunit: ^11.5
This package is auto-updated.
Last update: 2025-10-24 21:52:19 UTC
README
A collection of string similarity and distance algorithms implemented in PHP with full Unicode and multibyte character support. This library provides standalone static methods for computing various similarity metrics, useful in natural language processing, fuzzy matching, spell checking, and bioinformatics.
What's New in v1.1.1
🔧 Fixed Naming Issues
- Fixed
Jaro::distance()- Previously returned similarity values (1.0 = identical), now correctly returns distance values (0.0 = identical) - Fixed
JaroWinkler::distance()- Previously returned similarity values (1.0 = identical), now correctly returns distance values (0.0 = identical)
✨ New Functions Added
Jaro::similarity()- Returns proper similarity values (1.0 = identical, 0.0 = completely different)JaroWinkler::similarity()- Returns proper similarity values (1.0 = identical, 0.0 = completely different)
📚 Improvements
- Better MongeElkan - Fixed edge cases for empty string comparisons
🔄 Migration Guide
If you were using Jaro::distance() or JaroWinkler::distance() expecting similarity values (where 1.0 = identical):
- Before:
Jaro::distance("hello", "hello")returned1.0 - After: Use
Jaro::similarity("hello", "hello")to get1.0, orJaro::distance("hello", "hello")returns0.0
Requirements
- PHP 8.3+
- Composer
Installation
- Use the library via Composer:
composer require edgaras/strsim
- Include the Composer autoloader:
require __DIR__ . '/vendor/autoload.php';
Features
- Full Unicode Support: All algorithms handle multibyte characters, emoji, combining marks, and complex grapheme clusters
- UTF-8 Validation: Automatic validation of input strings with clear error messages
- Error Handling: Proper exception types with descriptive messages
- Code-Point Based: Consistent behavior across all Unicode normalization forms
- Optimized Tokenization: Smart whitespace handling for text-based algorithms
- Distance vs Similarity: Clear distinction between distance measures (0 = identical) and similarity measures (1 = identical)
Supported Algorithms
| Class | Method | Return Range | Description |
|---|---|---|---|
Levenshtein |
distance() |
0 to ∞ | Number of insertions, deletions, or substitutions needed. |
DamerauLevenshtein |
distance() |
0 to ∞ | Levenshtein with transpositions included. |
Hamming |
distance() |
0 to ∞ | Number of differing positions (requires equal-length strings). |
Jaro |
similarity() |
0.0 to 1.0 | Similarity based on character matches and transpositions. |
Jaro |
distance() |
0.0 to 1.0 | Distance measure (1 - similarity). |
JaroWinkler |
similarity() |
0.0 to 1.0 | Jaro with a prefix match boost for similar string starts. |
JaroWinkler |
distance() |
0.0 to 1.0 | Distance measure (1 - similarity). |
LCS |
length() |
0 to ∞ | Length of the longest common subsequence. |
SmithWaterman |
score() |
0 to ∞ | Local alignment scoring for best-matching subsequences. |
NeedlemanWunsch |
score() |
-∞ to ∞ | Global alignment scoring for entire string similarity. |
Cosine |
similarity() |
0.0 to 1.0 | Similarity via character frequency vectors. |
Cosine |
similarityFromVectors() |
-1.0 to 1.0 | Cosine similarity for numeric vector inputs. |
Jaccard |
index() |
0.0 to 1.0 | Ratio of shared to total unique characters. |
MongeElkan |
similarity() |
0.0 to 1.0 | Average best-word similarity using Jaro-Winkler internally. |
Understanding Distance vs Similarity
This library provides both distance and similarity measures for certain algorithms:
-
Distance measures: Return
0.0for identical strings and higher values for more different strings- Examples:
Levenshtein::distance(),Hamming::distance(),Jaro::distance(),JaroWinkler::distance()
- Examples:
-
Similarity measures: Return
1.0for identical strings and lower values for more different strings- Examples:
Cosine::similarity(),Jaccard::index(),Jaro::similarity(),JaroWinkler::similarity()
- Examples:
For Jaro and Jaro-Winkler algorithms, both functions are available:
similarity()returns values from 0.0 (completely different) to 1.0 (identical)distance()returns values from 0.0 (identical) to 1.0 (completely different)- The relationship is:
distance = 1.0 - similarity
Usage
Basic Usage
use Edgaras\StrSim\Levenshtein; use Edgaras\StrSim\DamerauLevenshtein; use Edgaras\StrSim\Hamming; use Edgaras\StrSim\Jaro; use Edgaras\StrSim\JaroWinkler; use Edgaras\StrSim\LCS; use Edgaras\StrSim\SmithWaterman; use Edgaras\StrSim\NeedlemanWunsch; use Edgaras\StrSim\Cosine; use Edgaras\StrSim\Jaccard; use Edgaras\StrSim\MongeElkan; // Detecting spelling error distance in user input Levenshtein::distance("kitten", "sitting"); // Returns: 3 // Detecting typo distance with transposition correction DamerauLevenshtein::distance("abcd", "acbd"); // Returns: 1 // Bit-level error detection (equal-length only) Hamming::distance("1011101", "1001001"); // Returns: 2 // Comparing short strings with transposition support Jaro::similarity("dixon", "dicksonx"); // Returns: 0.767 (similarity) Jaro::distance("dixon", "dicksonx"); // Returns: 0.233 (distance = 1 - similarity) // Matching names with common prefixes JaroWinkler::similarity("martha", "marhta"); // Returns: 0.961 (similarity) JaroWinkler::distance("martha", "marhta"); // Returns: 0.039 (distance = 1 - similarity) // Finding common subsequence in DNA fragments LCS::length("ACCGGTCGAGTGCGCGGAAGCCGGCCGAA", "GTCGTTCGGAATGCCGTTGCTCTGTAAA"); // Returns: 13 // Local alignment score for substring match SmithWaterman::score("ACACACTA", "AGCACACA"); // Returns: 11 // Global alignment score for complete sequence match NeedlemanWunsch::score("GATTACA", "GCATGCU"); // Returns: 0 // Comparing word frequency in short texts Cosine::similarity("night", "nacht"); // Returns: 0.6 // Comparing embedding vectors from NLP model Cosine::similarityFromVectors([0.1, 0.2, 0.3], [0.1, 0.3, 0.4]); // Returns: 0.925 // Comparing token overlap in short strings Jaccard::index("abc", "bcd"); // Returns: 0.5 // Fuzzy match between two multi-word names MongeElkan::similarity("john smith", "jon smythe"); // Returns: 0.822
Unicode and Multibyte Examples
// All algorithms support Unicode characters Levenshtein::distance("café", "caffe"); // Returns: 2 Levenshtein::distance("こんにちは", "こんにちわ"); // Returns: 1 // Emoji and complex characters Levenshtein::distance("🚀🌟", "🚀⭐"); // Returns: 1 Hamming::distance("👍🏽", "👍🏾"); // Returns: 1 // Different scripts and languages Jaro::similarity("привет", "привет"); // Returns: 1.0 (identical) Jaro::distance("привет", "привет"); // Returns: 0.0 (no distance) JaroWinkler::similarity("عربي", "عربى"); // Returns: 0.9 (high similarity) JaroWinkler::distance("عربي", "عربى"); // Returns: 0.1 (low distance) // ZWJ sequences and combining marks Levenshtein::distance("👨👩👧👦", "👨👩👧👦"); // Returns: 3 Levenshtein::distance("é", "e\u{0301}"); // Returns: 2
Custom Scoring
// Smith-Waterman with custom scoring SmithWaterman::score("ACGT", "ACGT", match: 5, mismatch: -2, gap: -1); // Returns: 20 // Needleman-Wunsch with custom parameters NeedlemanWunsch::score("ACGT", "ACGT", match: 3, mismatch: -1, gap: -2); // Returns: 12 // Jaro-Winkler with custom prefix scaling JaroWinkler::similarity("prefix_test", "prefix_demo", 0.2); // Custom scale factor for similarity JaroWinkler::distance("prefix_test", "prefix_demo", 0.2); // Custom scale factor for distance
Error Handling
try { // This will throw InvalidArgumentException for unequal lengths Hamming::distance("abc", "abcd"); } catch (InvalidArgumentException $e) { echo $e->getMessage(); // "Strings must be of equal length." } try { // This will throw InvalidArgumentException for invalid UTF-8 Levenshtein::distance("valid", "\xFF\xFF"); } catch (InvalidArgumentException $e) { echo $e->getMessage(); // "Input strings must be valid UTF-8." } try { // This will throw InvalidArgumentException for mismatched vector lengths Cosine::similarityFromVectors([1, 2], [1, 2, 3]); } catch (InvalidArgumentException $e) { echo $e->getMessage(); // "Vectors must be the same length." }